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1 The Goal of Causal Inference

Recall that the two potential outcomes in a simple experiment, Yi(1)

and Yi(0), are potential. They represent (for unit i) what would hap-
pen under treatment, and what would happen under control, respec-
tively. Since we can never observe both potential outcomes for a given
unit in our study,1 we rarely focus on estimating the individual-level 1 What is this fact called?
true treatment effect, τi = Yi(1)− Yi(0).

Instead, we focus on estimating an average effect across many
units. That is, we are usually interested in an average treatment ef-
fect (ATE). Specifically, we may be interested in an estimate of the
average of the treatment effects for the individuals in our sample, the
sample average treatment effect, or SATE.2 To help express the av- 2 The average (the “mean”) takes all

the quantities, adds them up, and
divides by how many you have.

erage, we’ll use the symbol
∑

(“sigma”), which just means “add up

the values”. For example,
10∑
1

means “add up the first 10 observations”;

more explicitly,
8∑

i=5

xi means “add up the 5th through the 8th val-

ues of x”. To express, “add up the x values of units in the treatment
group”, we’ll use

∑
i∈T

xi.
n∑

i=1
xi = x1 + x2 + . . .+ xn

One last bit of notation: we will let the subscript _T represent the
units that actually receive treatment, and the subscript _C represent
those that actually receive control. So, YiT (1) is the potential outcome
under treatment for a unit that actually did receive treatment. That’s
something we observe: what would that unit have done, if it received
treatment – which it did. On the other hand, YiT (0) is something we
cannot observe: what the unit would have done under control (but it
was in the treatment group). YiT (0) = the outcome under control

for a treated unit (not observable)
The true SATE is the average of the individual treatment effects

for the n units in our sample:

SATE =
1

n

n∑
i=1

[Yi(1)− Yi(0)]

We’ll simplify the notation a bit, and use the overline to represent
the average of a quantity. So, the SATE is also

SATE = Yi(1)− Yi(0)

Since this quantity relies on a set of individual effects Yi(1) − Yi(0),
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it cannot be directly observed.3 The average is just made up of addi- 3 What is this fact called?
tions and a multiplication by 1

n , so we can equivalently write

SATE = Yi(1)︸ ︷︷ ︸
Avg if all Tr

− Yi(0)︸ ︷︷ ︸
Avg if all Co

That is, the SATE is the difference between the average outcome of
all units, if all units were subject to treatment, minus the average
outcome of all units, if all units were subject to control.

Let’s consider Yi(1). This is the average outcome if everyone re-
ceived treatment, and Yi(1) = 1

n

n∑
i=1

Yi(1). We can break this up into
two groups:

1

n

n∑
i=1

Yi(1) =
1

n

(∑
i∈T

Yi(1) +
∑
i∈C

Yi(1)

)
This consists of the outcomes under treatment for those who actu-

ally received treatment, and the outcomes under treatment for those
who actually received control.4 There’s a similar quantity for the 4 Which one of these can we observe?

Which can we never observe?Yi(0). So, overall, we can write the true SATE using four quantities:

SATE = Yi(1)− Yi(0)

=
1

n

[
n∑

i=1

(Yi(1)− Yi(0))

]

=
1

n

[(
n∑

i=1

Yi(1)

)
−

(
n∑

i=1

Yi(0)

)]

=
1

n

[(∑
i∈T

Yi(1) +
∑
i∈C

Yi(1)

)
−

(∑
i∈T

Yi(0) +
∑
i∈C

Yi(0)

)]

In order to estimate the SATE, we need an estimate of
∑
i∈C

Yi(1)

and the similar quantity
∑
i∈T

Yi(0). If the treated outcomes give us a

perfect estimate of what would have happened to the controls, and
vice-versa, we can simply substitute in the values we observe for
those we don’t. We then estimate the true SATE using the simple
observed “difference in means” estimator between the treated and
control groups:

ŜATE =
1

nT

[∑
i∈T

Yi(1)

]
− 1

nC

[∑
i∈C

Yi(0)

]
= YT (1)− YC(0)
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2 Why Experiments?

Experiments generate the best observable estimates of the quanti-
ties we can’t observe. An experiment is far more likely to generate
treatment and control groups that are similar than is an observational
design.

If we, the researchers, randomized whether someone gets treatment
or control, then we know that being assigned treatment or control
is not related to your outcomes, on average. If the outcomes under
treatment, the Yi(1), differ by whether or not you are in the treatment
or control group, then YT (1) ̸= YC(1). In that case, we cannot use
YT (1) as a good estimate of the unobservable YC(1). A randomized
experiment gives us the best chance of the outcome being unrelated to
whether you received treatment or control, and thus, the best chance
of YT (1) being a good estimate of YC(1); similarly, an experiment
gives us the best chance of the observable YC(0) being a good estimate
of the unobservable YT (0).

2.1 The Social Pressure GOTV Experiment

Gerber et al. [2008] describe an experiment in which voters are ran-
domly assigned to four different conditions. In the control condition,
there is no contact. In the other 3, the voter gets a mailer with one of
three messages:

• Civic duty: “DO YOUR CIVIC DUTY – VOTE!”
• Hawthorne: “YOU ARE BEING STUDIED! …VOTE!”
• Naming-and-shaming:

Why randomly assign these messages, instead of just asking people
in a survey “Has anyone encouraged you to vote by telling you to do
your civic duty?”, and then comparing turnout among those who say
“yes” or “no”?
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3 Observational Studies and Confounding

In observational studies, as opposed to randomized experiments, the
researchers do not decide which units get treatment and which get
control. The difficulty with doing causal inference in observational
studies is that the units may not be put into treatment groups ran-
domly; the groups may differ systematically. If the potential outcomes
differ by whether you receive treatment or control, then we can’t use
one group to estimate the other. Formally, YT (1) won’t be a good
estimate of YC(1), and YC(0) won’t be a good estimate of YT (0). In
this case, something else, not the treatment, may cause a difference
between the treatment and control groups. This is a confounding vari-
able. Confounders are pre-treatment variables that partly determine
(a) the outcome (or else they are irrelevant), and (b) the treatment
(which group a unit is sorted into).

Confounders influence Y and T ,
the outcome and the treatment
assignment.Unknown or unmeasurable confounders are the biggest threat to

valid causal inference in observational studies. Confounders prevent us
from being able to distinguish causation from association or correla-
tion.

Note that the observed outcomes may differ between treatment and
control – that would be consistent with an actual effect! However,
the underlying, only-half-observed potential outcomes should not vary
between the two groups.

3.1 Addressing Confounding: Subclassification

Some observational designs are better at yielding valid causal infer-
ences than other designs. In observational designs, sometimes unsuc-
cessfully, we try to adjust our naive estimate, the treatment-control
difference, statistically. One strategy for this is to subclassify, and es-
timate the treatment-control difference within classes defined by the
confounder.

Substantively, suppose the social pressure experiment had only been
an observational design. We could ask “Did turnout differ between
those who had happened to encouter Civic Duty messages in their
daily lives in 2006, versus those who did not encounter those mes-
sages?” Suppose we find, yes, those who heard Civic Duty messages
were more likely to turn out. Was it the messages that caused them
to turn out more? Probably not. The people who encountered Civic
Duty messages were probably more likley to turn out anyway. Maybe
they encountered those messages because they worked on campaigns,
or they paid attention to politics, or, especially, because they voted
last time. The two groups likely have different fractions that turned
out in 2004.

Subclassification would say, “Don’t just compare Civic Duty to No
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Civic Duty turnout. Compare turnout just in the subset of those who
voted in 2004, and then just in the subset that didn’t vote in 2004”.
Then, we know that within those groups, prior voting is controlled.
Within the subsets, prior turnout is equal, so prior turnout can’t
explain differences we observe between Civic Duty vs. No Civic Duty.
The Civic Duty group that turned out in 2004 can best be compared
to the No Civic Duty that also turned out in 2004. The Civic Duty
group that did not turn out in 2004 can best be compared to the No
Civic Duty that also did not turn out in 2004.

3.2 Addressing Confounding: Difference-in-Differences Designs

Before-After designs ask the simple question “Did the outcome go up
or down?” In the NJ minimum wage study (Card and Krueger [1994]),
a Before-After design would ask “After the new minimum wage, did
employment rise or fall in NJ?”5 5 What’s weak about this question?

What is being ignored?Difference-in-differences (DiD) designs improve on Before-After de-
signs. Where a Before-After design only uses 2 pieces of information,
the DiD design uses 4. The Before-After estimate for NJ would be

Before-After estimate = EmploymentAfter
T − EmploymentBefore

T

The DiD estimate is just the difference between two Before-After
estimates. The DiD is the Before-After estimate for NJ, but we sub-
tract off the change that occurred in the control state, PA. This sec-
ond part removes the part of the change in employment that would
have occurred anyway, in the absence of the law change. (E.g., per-
haps the economy was growing, or fast food restaurants had been hit
by health scares and had to lay off workers.)

DiD estimate = (Y
After
T − Y

Before
T )− (Y

After
C − Y

Before
C )

= (Y
After
NJ − Y

Before
NJ︸ ︷︷ ︸

Change in Treated

)− (Y
After
PA − Y

Before
PA︸ ︷︷ ︸

Change in Control

)

The “Change in Control” is our estimate of what would have hap-
pened in the treated unit (NJ), in absence of treatment (i.e., without
the minimum wage change). The key assumption is “parallel trends” –
the change in PA is what the change in NJ would have been, without
the new minimum wage. Figure 1 shows this assumption graphically.
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Figure 1: The change in PA (control,
in red) is what we assume would have
happened in NJ (treated, dotted −−),
in the absence of the law change. This
is an assumption of “parallel trends”.
The black segment for NJ shows what
actually happened.
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